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I n  order to determine the heat transfer inside a TIG (tungsten/inert gas) weld 
pool, it is necessary to  have a good understanding of the flow patterns of the liquid 
metal. The principal force driving the fluid motion is the electromagnetic j x B force 
due to  the current from the welding arc and its self-magnetic field. I n  this paper we 
consider the flow of a viscous incompressible conducting fluid in a hemispherical 
container due to various distributions of the electric current. The problem is posed 
as a time-dependent problem and is solved numerically using the Du Fort-Frankel 
leap-frog method. Results are presented for currents of 100 A flowing through the weld 
pool. This is a typical current for TIG welding, and corresponds to a Reynolds number 
in the range 200 < Re < 600. Previous solutions of the problem were restricted to low 
Reynolds numbers, i.e. low currents. 

1. Introduction 
I n  recent years there has been a considerable amount of interest in understanding 

the physical mechanisms underlying welding processes. Most of this work has been 
towards understanding the TIG (tungsten/inert gas) welding process, where the 
source of heat is an electric arc and where no filler metal is added to the weld. An 
early attack on the problem was by Rosenthal (1941) who considered the heat flow 
due to a point source of heat traversing the surface of a semi-infinite block of material. 
The extensions of this work to cover plates of finite thickness or a distributed source of 
heat rather than a point source are straightforward numerical exercises. A more 
difficult extension of the Rosenthal work is to include the latent heat of fusion a t  the 
solid-liquid boundary. Longworth ( 1975) has developed a numerical method which 
takes account of the latent heat and allows the thermal properties to be functions of 
temperature. 

All of the above techniques ignore any convective motions in the liquid. Recent 
experiments (Woods & Milner 1971 ; Kublanov & Erokhin 1974) havedemonstrated 
that the weld pool produced by a TIG arc is vigorously stirred and that the stirring is 
driven primarily by electro-magnetic forces, the contribution due to thermal con- 
vection being very small by comparison. We may verify that the effects of thermal 
convection should be small by comparing the magnitude of the thermal and electro- 
magnetic stirring forces. The ratio of these two forces is gAp/(po 12/r2a3), where g, 
Ap, I ,  po and a are the acceleration due to  gravity, the change in density, the total 
current, the permeability of the weld metal and the pool radius respectively. Inserting 
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typical values of A p  = 500kgm-3 (which corresponds to a temperature difference 
of 600 "C in the pool), I = 100 A and a = 2.5 mm, this ratio takes a value of 0.06. 

V[Je shall now estimate a value for the magnetic Reynolds number R, = p,,vav,, 
where v and wo are electrical conductivity of the weld metal and a typical flow velocity. 
Inserting typical values of a = 2.5 mm and wo = 50 mm s-1, we find that R, - low4. 
This confirms the result of Shercliff (1970) that the back e.m.f. generated by the metal 
flow is small. We shall therefore evaluate the electromagnetic stirring force corres- 
ponding to a stationary pool and use that throughout our calculations. The value of 
w0 used above is a typical velocity predicted by the model in this paper and is shown 
by Woods & Milner (1971) to a t  least be of the correct order of magnitude. 

Some theoretical attention has been directed towards the problem of weld pool 
stirring in the last few years. Shercliff (1970) considered the flow of a semi-infinite 
inviscid fluid due to a point source of current and showed that the solution possesses 
a singularity on the axis of symmetry. Sozou (1971) added viscosity to the model and 
showed that this removed the singularity unless a dimensionless parameter 

K = p0 12/2~'pv '  

exceeded a value of about 300. In  this expression p and v are the density of the material 
and the kinematic viscosity of the material. Inserting typical values for molten steel 
we find that the maximum current for which no singularities occur is around 4 A, 
which is much smaller than typical welding currents. The parameter K occurs naturally 
in thesolutionof theabove semi-infinite problem, where it is impossible to form a length 
scale. We note that, for the flow in a finite container, the ratio of the electromagnetic 
forces to the viscous forces is 27~2K/Re, where Re is the Reynolds number. 

Sozou & Pickering (1976) found the solution for a point source of current acting at  
the centre of a finite hemisphere. For a free surface boundary condition on the top 
surface rather than a no-slip boundary condition, the critical value of K is reduced to 
about 94; above this value singularities will appear in the velocity field. They also 
tackled the problem numerically, and were unable to obtain a numerical solution 
above K = 20. Andrews & Craine (1978) looked a t  the problem of flow in a hemisphere 
with a distributed source of current. This is more realistic physically as the current 
from the arc typically enters the weld pool over a disc of radius about half the width 
of the pool. They were only able to treat the case of low-Reynolds-number flow, which 
is a valid approximation for low currents (up to 1OA passing through the weld pool). 
Unlike the point source cases, there was no indication of singularities in the velocity 
field. Andrews & Craine also found that the flow could rotate in either direction (i.e. 
either up or down the axis), depending on the nature of the current source, whereas 
the point source of current always produced a flow down the axis. 

Sozou & Pickering (1978) have also considered the problem of fluid flow in an 
axisymmetric container of fluid when the current is produced by an electrodein 
contact with the liquid surface. They solved the problem for the case of a low Reynolds 
number. The boundary condition that they used (i.e. part of the upper'pool surface 
in contact with an electrode) is relevant to the results of model experiments to study 
flow patterns in a low-melting-point material such as those performed by Kublanov 
& Erokhin (1 974). However, in TIG welding the tip of the electrode is typically 3 mm 
above the pool surface and the current is transmitted to the pool via the ionized 
shielding gas and metal vapour in the arc. We have been unable to  obtain an estimate 



Fluid flow in a weld pool at high currents 

Electrode w 
789 

Free 
assumec 

Azimuth 
magnetic 

-77 
boundary 

emisphere 

FIGURE 1 .  Schematic diagram of stirring process. 

of the viscosity of this arc gas ; however we would expect it to be much smaller than 
the viscosity of the liquid weld metal. We shall therefore model the TIG welding 
process by taking the upper pool surface as stress-free. 

I n  this paper we shall consider the steady-state fluid flow in a hemispherical weld 
pool produced by a distributed source of current. Unlike Andrews & Craine we shall 
include the nonlinear terms in our treatment of the Navier-Stokes equations and we 
shall solve these equations numerically. This means that the results will predict the 
flow in a hemisphere for much higher currents than were possible with the linear 
model; indeed our solution will break down only when the laminar flow becomes 
unstable and the flow becomes turbulent. Our results indicate that this does not 
happen for currents of up to a t  least 100A. 

2. Formulation of the problem 
The fluid flow in a weld pool must satisfy the Navier-Stokes equations 

v . v  = 0, (1) 

(2) 

together with appropriate boundary conditions, where v, p ,  j, and B refer to  the fluid 
velocity, the pressure, the current density and the magnetic field respectively. Because 
of our assumptions of axial symmetry in the specification of the problem, we may 
expand equations (1) and (2)  in spherical polar co-ordinates r ,  0 and q5, and set the 
q5 derivatives equal to zero. The co-ordinate system is shown in figure 1 .  

In  recent years a large number of numerical methods have been developed for the 
solution of the Navier-Stokes equations, and a comprehensive survey is given by 
Roache (1972). The method we shall use determines the solution of the unsteady 
Navier-Stokes equations from some initial solution, e.g. v = 0. At first sight it would 
appear to be an unnecessary complication to determine the solution to a steady-state 
elliptic problem by adding a time derivative and solving the resulting parabolic 

&/at + (v . V )  v = - ( l / p )  Vp + ( l / p )  j x B + vV2v, 
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problem. However, it is shown in Roache that the solution of the initial-value problem 
by a step-by-step method is equivalent to  the solution of the original steady-state 
problem by the iterative technique of relaxation. 

We note that the use of a Stokes stream function @ will ensure that the continuity 
equation (1) is satisfied. Accordingly we set 

v = V x (0, 0, $1. sin 6'). (3) 
It will prove convenient to set 

w = V x v  = (O,O,Q/rsinO). (4) 

We now introduce dimensionless variables. We put 

R = r /a ,  T = vt/a2, F = ( 4 7 1 ~ a ~ / p , 1 ~ )  V x (j x B), 

Y = 2@/av, V = 2av/v and Q = 2aQ/v. ( 5 )  

(6) 

Taking the curl of equation ( 2 ) ,  we obtain 

aQ/aT+&Rsin6'{V'x (V.V') V}, = KFRsinO+Dfi, 

where V' is the dimensionless vector differential operator, F is the $ component of 
the vector F and the operator D is defined by 

D = {a2/aR2+ ( i p ) ( a 2 / a o 2 -  cotoa/ae)}. ( 7 )  

DY = -Q. ( 8 )  

Combining equations (3) and (4) gives 

Equation (6) is not the most convenient form for the momentum equation. We may 
expand the nonlinear advection term in (6) to give 

aQ/&+&R2sin26'Vf. (VQ/R2sin20) = KFRsin6'+ DQ, (9) 

which is equivalent to 

where 6 = R/R2sin20, and hence i t  is a conservation equation. It has been shown 
that it is generally advantageous to formulate fluid flow equations in conservation 
form. By doing so and taking central differences we ensure that the finite-difference 
scheme also possesses the conservation property. It has been found that conservative 
difference schemes are generally more accurate than non-conservative schemes, 
although the truncation errors are of the same order (Roache 1972). 

Equations (8) and (9) must be solved subject to suitable boundary conditions and 
initial conditions. The situation we wish to solve is that of flow in a hemisphere (see 
figure 1). We shall approximate the free surface between the liquid and vapour as 
being flat. The result of this approximation is that we are no longer able to prescribe 
the pressure on this surface, and it is possible that the pressure will be significantly 
different from atmospheric. The validity of our approximation will be considered 
in $5. 

The boundary conditions that are required are that both Y and Q should be specified 
a t  all points on the boundary of the region of interest, i.e. on R = 0, R = 1,0 = 0 and 
6' = 471. As there is no normal component of flow across the boundary, we have as 
one condition Y=O (10) 
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a t  all points on the boundary. The second boundary condition will be different for 
different segments of the boundary. On the 'free surface' 6' = ti. we require the 
tangential component of stress to be continuous. We noted in the introduction that 
the viscosity of the arc gas is small by comparison with that of the liquid, so we impose 
the condition that the tangential shear stress is zero in the liquid. This is equivalent 
to the condition that the vorticity is zero, i.e. 

Q = 0 on 6 =  hi.. (11) 

On the axis, 6' = 0 the condition of symmetry again shows that the vorticity must be 

(12) 
zero, i.e. 

lim Q/sin8 = 0. 
e+o 

Since the corner R = 0 is a stagnation point we expect the vorticity to be single-valued 
there, so SZ/R sin 6-t  0 as we approach the corner from any direction, i.e. 

lim Q / R  = 0. 
R-0 

Finally on the outer boundary, R = 1, the tangential component of velocity must be 
zero as well as the normal component, so 

aY-'/aR = 0 on R = 1. (14) 

(15) 

Y =Yo, Q = 8, for 7 = 0, (16) 

To complete the specification of the problem we need two initial conditions. The 
simplest are 

Other initial conditions that can be used are 

Y=SZ=O for 7 = 0 .  

where Yo and SZ ,  are the solution to a flow problem with a current distribution similar 
to that being considered. As we are only interested in the steady-state solution to the 
Navier-Stokes equations, our final solution should be independent of the choice of 
initial conditions. The choice of initial condition might be expected to alter the time 
taken for the transient effects to decay, and thus reduce the computation time. This 
point will be discussed further in a later section. 

3. Numerical solution of the Navier-Stokes equations 
3.1. Finite-difference equations 

We first divide up the region of interest using a finite-difference mesh. To do this, we 
choose integers J and K and set 6R = l/(J- l), 68 = n / Z ( K -  1). We also choose a 
time step 67 and we use the notation Yz to represent the value of Y a t  the (j, k)th 
grid point and the nth timestep, i.e. 

YTk = Y{(j- l ) S R , ( k -  1)66',n67), (17)  

with a similar notation for 0. We also set 

R i = ( j - l ) S R ,  8,= (k-1)68, 

sk = sin 8, and $',k = F(R,, dk). (18) 
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We shall solve the momentum equation using the Du Fort-Frankel leap-frog 
method. This method approximates the differential equation by an explicit finite- 
difference scheme using three time levels. The vorticity variable Q is only evaluated 
at alternate mesh points a t  any time level. For details of the method we refer to Moore, 
Peckover & Weis; (1973)  andweir  ( 1 9 7 6 ) .  

Taking central differences of equation (9) and rearranging gives 

QE+kl= 52%-1 j, k + {267/(R; 68'+ 6 7 ( S k / s k + *  f S k / s k a  + 2R; 602/6R2))} 

x {A: k Rj" 88' + K q ,  k R: Sk + (Qj" , ,  k - 2fiFx1 + a?-,, k )  

R ~ ~ 8 2 / ~ R 2 + S k ( ( Q ~ k + l -  Q z k l ) / s k + *  + ( Q t k - 1 -  Q Z k ' ) / S k - - f ) ) ,  

where the refers to the advection term, i.e. 

A? j , k  = - l Q  2{ i + l , k l R ; + l S k )  ( y i + l , k + l  - y i + l , k - l )  

- ( Q j - l , k / R : - l S k )  (yj-l ,k+l-yj-l ,k-l)~/46R6e 

+ * ( S k / R j ) { ( Q j , k + l / R j  s%+l) ( y j + l , k + l - y j - l , k + l )  

- ( O j . k - d R j  ( y j + l , k - l  - y j - l , k - l ) ) / 4 6 R 6 8 >  

all terms on the right-hand side of equation (20 )  being evaluated a t  time level n. 
I 

Once we have used the momentum equation to determine values of Q on half the 
grid points a t  the new time level (n+ l ) ,  we use equation (8) relating the stream 
function and vorticity to determine the values of Y a t  the new time level. To obtain 
a useful scheme, we must approximate the operator D using only the values of Y on 
alternate grid points. By use of Taylor's theorem, we may show that equation (8) 
may be approximated by 

- ' i , k  = ~yi+l,k+l+yi-l,k+l~yj+l,k-l+yj-l,k-l - : ( y j + 2 , k + y j - 2 , k )  

- 3Yj, k ) / 2 R ?  6e2 + (yj+, k + Yj-2, k - 2 Y j ,  k } / 4 6 R 2  

+ ' k { \ r i + l ,  k-1 + y j - l ,  k-1 - y j + l ,  k + l  --yj-l ,k+l}/4R: 687 ( 2 1 )  

where all the values are at time ( n + l ) .  The set of equations ( 2 1 ) ,  together with 
boundary conditions which will be discussed in the next section, form a complete 
system of equations for the unknown ' r j &  over half the grid points and may be 
solved by a relaxation method. 

Unfortunately the values of y." produced by ( 2 1 )  are those on the wrong half of the 
grid to be able to advance the momentum equation by another time step. To advance 
the momentum equation we must first interpolate among the values of Y to determine 
the missing values. The most satisfactory interpolation procedure follows by noting 
that YP satisfies equation (8). If we use the usual five-point representation for the 
differential operator D and rearrange, we obtain 

yj, k = {Rf 682(yj+1, k + y j - l , k )  + 6R2(yj,  k + l  + y j ,  k-1) 

- ~ 6 8 6 R 2 C O t 8 k ( Y P j , k + l - Y j r k - l )  4- Rj268'6R2Qj,k}/2(Rj2Se2+ 6R2). ( 2 2 )  

In equation ( 2 2 ) ,  all the terms are evaluated a t  time (n + 1). The value ofY on the left- 
hand side is that which we wish to determine, while the values on the right-hand side 
are known. The value of 52 on the right-hand side is not known; however it may 
simply be replaced by an average of values at surrounding points. 
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We have now evaluated all the relevant variables a t  time (n+ 1)  and we may 
proceed to time (n + 2) by exactly the same process. We proceed in this manner until 
successive values of both Y and Q agree to within some desired accuracy a t  all points 
on the mesh. 

3.2. Boundary conditions 

We consider first the momentum equation. One difficulty in the boundary conditions 
is the representation of the no-slip boundary condition on the solid-liquid boundary. 
Orzag & Israeli ( I  974) discuss this problem and show that a balance must be struck 
between truncation error and stability in the choice of representation. Following their 
recommendation, we use a simple representation for the boundary condition, i.e. 

Qj,k = - 2Y5-l,k/SR2. ( 2 3 )  

The remaining boundary conditions for the momentum equation are applied in a 
straightforward manner. 

We now consider the stream-function equation. The boundary condition Y = 0 
does not give rise to any difficulty; the only problem is that  for j = 2 and J - 1 the 
seven-point formula ( 2  1 )  contains one non-existent point with j = 0 or J + 1 .  Clearly 
we must rewrite the expression 

(24 )  a2v"/aR2 2: {y.j+z,k +\Ti-& k - 2 Y j ,  k)/46Rz 

for j = 2 and J - 1. Weir used a different seven-point formula close to  the boundaries 
with (24) replaced by an expression for a2Y/a02 with step length 2SB. However, this 
approach will break down a t  the corners of the region, where yet another treatment is 
needed. An alternative strategy is to use Taylor's theorem and the two boundary 
conditions Y = aY/aR = 0 for R = 0 

to obtain avlaR2 2: ZY,, k/96R2 (25 )  

to  the same accuracy as the rest of the scheme. A similar expression holds close to  the 
outer boundary. 

The initial conditions Y = Q = 0 were most frequently used. However, for some 
high-current flows i t  was found to reduce the computing time to take the initial 
conditions as the steady-state solution to  a similar problem. 

4. Expressions for the stirring force 
We first consider the form for the stirring force F used by Andrews & Craine (1978). 

They evaluated the current distribution produced by a point source a distance b above 
the weld pool, and a point sink a distance c below the pool, with a constant value for 
the electrical conductivity everywhere. This produced an expression for the stirring 
force inside the weld pool as 

F = (Rc3 - Rg3) ( 2  - (b + R cos I9/R,) - (c  - R cos BIR,)}/2R sin 19, ( 2 6 )  

where R, and R, are the distances from the point (R,B) to the source and the sink 
respectively, all distances being scaled by the pool radius, a. 

With this form for the current distribution the velocity field is rather sensitive to 
the values of b and c. Unfortunately it is difficult to relate the values of b and c to any 
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experimental conditions. An added complication is that, with the above form for the 
stirring force, most of the current misses the pool altogether; for a typical case b = c = 2 
only 11 yo of the current passes through the weld pool, which is clearly unrealistic. 
Experimental results show that the current distribution is certainly more concentrated 
than this, although it is not clear just how concentrated it actually is. The maximum 
radius of the arc is typically around 4 mm, but i t  is believed that, a t  the plate, the 
current is focused so as to flow through an anode spot which is smaller than this 
(Quigley 1977). 

Accordingly we shall consider an alternative formulation for the stirring-force 
problem. However, the form given by equation (26) and the corresponding solution of 
the linearized fluid flow problem will provide a useful check for our numerical scheme. 

We now consider the current flow in a plate of finite thickness, g, due to a specified 
current input across the surface which coincides with the top of the pool. It is most 
convenient to tackle this problem in terms of cylindrical polar co-ordinates, so we set 

u = rsin8, z = rcos8. (27) 

j, = I e - U a % / m i  on z = 0, (28) 

j, = 0 on z = g. (29) 

We shall consider a particular form for the axial current flow across the upper surface 
of the plate 

while assuming that the lower surface is electrically insulated gives 

Unfortunately it is not appropriate to solve this problem in termsof an electric potential 
7 since 7 would have a logarithmic singularity as u+m. Instead we may differentiate 
Laplace's equation for the potential and the boundary conditions (28) and (29) to 
formulate a problem for the radial current flow, j,. This problem may be solved using 
a Hankel transform to give 

j ,  = (1/27r)/ sJ,(us) e-szu:/4 cosh s(g - z )  dslsinh gs. t 30) 
0 

The expression for the axial current flowj, is similar. 
We may now integrate the equation 

poj = V x B 

to  determine the non-zero component of the magnetic field as 

B, = (pug 1/27r)IOm J,(us) e-s2u34 sinh s(g - z )  dslsinh gs. (31) 

The expressions (30) and (31) may be evaluated numerically by a Gauss-Laguerre 
quadrature method. Finally, we may evaluate the stirring force as 

F = 8n2a4j, B,/po I'u. (32) 

5. Stability and accuracy 
In  order that the advective terms in the momentum equation should not lead to 

instabilities, we require that the Courant-Friedrich-Lewy conditions be satisfied, i.e. 
that  

V,Sr/SR < 1 (33) 

and &Sr/RS8 < 1 .  (34) 



Fluid $ow in a weld pool at high currents 795 

The Du-Fort-Frankel representation of the diffusive term is always stable ; however 
in order that  i t  should be reasonably accurate we prefer 

Accordingly the time step is initially chosen so as to satisfy condition (35) and sub- 
sequently i t  is modified if necessary to ensure that (33) and (34) are always satisfied. 

In  the numerical scheme there are several parameters which govern the accuracy 
by which two successive values of a variable must agree before we assume that an 
iterative scheme has converged. The three principal parameters govern the con- 
vergence of 'P a t  each time step and the amount by which Y and i2 must agree a t  
successive time steps for the steady-state solution to have been achieved. For most 
of the results quoted, these parameters have been taken as As a check that this 
was sufficiently small, a typical case was repeated with the parameters reduced to 
5 x The resulting change in Y was no more than 0.5 yo. 

Most of the results quoted below were obtained with a 16 x 16 mesh, i.e. 6R = 1/15, 
60 = n/30, or a 21 x 21 mesh. As a check on accuracy, a small number of cases were 
run with meshes of size 1 1 x 1 1 or 31 x 3 1 .  Comparison of the results indicated that the 
results quoted are accurate to within about 3 yo. 

A final possible source of error lies in the fact that  we have taken the top surface 
of the pool to be flat. This means that we are unable to prescribe the normal stress on 
the top surface, and it is possible that there will be a significant discontinuity in 
pressure across this surface. I n  practice this discontinuity will be accounted for by a 
distortion in the top surface which will introduce variations in hydrostatic and surface 
tension pressures. 

For convenience we shall estimate the effect of this pressure distribution in terms 
of dimensional variables. At the free surface the normal hydrodynamic stress 

must be balanced by the surface tension of a suitably deformed surface. To determine 
the pressure p accurately is extremely difficult (Roache 1972);  however it is simple 
enough to obtain a rough estimate of the pressure variation across the top surface by 
integrating the r component of the steady-state momentum equation across the upper 
surface to give 

where we have taken the pressure to  be zero a t  the edge of the pool surface, r = a. 
Taking the form ( 2 8 )  for the current input on the upper surface, the electromagnetic 
stirring force may be evaluated as 

IrUjm ~ , d r  = ,uO12/(4n2u3 { - ~ , ( a ~ / u ; )  + ~ , ( 2 a 2 / u 3  + El(r2/ut) - El(2r2/u i )} ,  

where El(z) denotes the exponential integral (Abramowitz & Stegun 1964). Taking 
I = 100A, a = 2-5mm and uo = 3mm, the electromagnetic term has a maximum 
value of around 15Nm-2, and each of the other terms in ( 3 6 )  and ( 3 7 )  takes value 
around 1 N m-2. As the surface tension of the pool surface should be no less than 
1 N m-l, the stress difference may be accommodated by the pool surface having a 
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FIGURE 2. DimensionIess stream function 106Y/K for a point source and a point sink with 
b / c  = 1. (a)  K = 8.2, ( b )  K = 2.0 x lo6, (c) K = 2.3 x lo', ( d )  K = 7.3 x 10'. 

radius of curvature of lOOmm, and the pool surface may be taken as being flat to a 
good approximation. Taking a more concentrated current input with uo = 1.25 mm, the 
maximum stress difference is around 160 N m-2 with the greatest contribution again 
coming from the electromagnetic term. This may be accommodated by a pool surface 
of radius of curvature 12 nim and it is just about acceptable to approximate the upper 
pool surface as being flat. For smaller values of uo this approximation would become 
invalid and consequently no results are presented for these cases. 

6. Results 
We consider first the current distribution used by Andrews & Craine with the 

current produced by a point source and a point sink. Figure 2 shows the streamlines 
for the case with a point source and a point sink each a distance R = 2 from the pool 
centre. The cases considered are K = 8.2, 2.0 x lo6, 2.3 x lo7 and 7.3  x 107, which 
correspond to I = 0.6, 300,1000 and 1800 A; however we note that only about 0.11 I 
actually passes through the weld pool. The case I = 300 shows only a small change 
from the linear (i.e. small-I) solution. Increasing I still further, the nonlinear terms 
in the equation begin to have a significant effect and the contours of Y are pushed 
towards the corner 8 = in) R = 1 .  The values of Y increase with increasing K (or I ) .  
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FIGURE 3. Dimensionless stream function 106Y/K for a point source and point sink 
with K = 2.3 x 10' ( I  = 100A). (a) b / c  = 0.5, (b )  b / c  = 0.74. 
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FIGURE 4. Dimensionless stream function 106Y/K for a Gaussian current input 
with decay radius 1 . 2 ~ ~ .  (a) I = 0.1A, (b)  I = 100A. 

For small K when the linear solution is valid, Y varies linearly with K .  For larger 
values of K the increase is slightly slower than this; for K = 7.3 x lo7 the maximum 
value of Y is about one-third of the value that would be obtained by scaling the linear 
solution. In  all these cases Y is negative throughout the pool; i.e. the flow is up the 
axis of symmetry. 

Andrews & Craine showed that by varying the positions of the source and the sink 
it was possible to change the direction of flow in the small-current case, or to produce 
two separate loops, one flowing clockwise and the other anticlockwise. Figure 3 shows 
that this behaviour is repeated for high currents, with I = lOOOA, although the 
streamlines have again been pushed outwards. 

Figure 4 is a contour plot of the stream function Y using the Hankel transform 
method for generating the stirring force j x B. The weld pool just penetrates the plate; 
i.e. the lower surface of the plate is a tangent plane to the hemisphere. The results are 
for small current (0.1 A) and a larger current (lOOA). Figure 4 has the current density 
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R = 0.1 
0-2 
0.3 
0.4 
0.5 
0.6 
0.7 
0.8 
0.9 

K 

23 2.3 x los 2.3 x lo6 2.3 x lo5 2.3 x lo6 2.3 x 10' 

UO 

r A 1 

0.8 
0-101 
0-127 
0-135 
0.125 
0.101 
0.072 
0-043 
0.020 
0-005 

0.8 
9.67 

12.75 
14.08 
13.58 
11.50 
8.50 
5.25 
2.50 
0.64 

0.8 
2.24, 2 
3.51, 2 
4.41, 2 
4.88, 2 
4.93, 2 
4.57, 2 
3.86, 2 
2.83, 2 
1.41, 2 

1.2 
9.26, 1 
1-48, 2 
1-88, 2 
2.08, 2 
2.10, 2 
1.93, 2 
1.59, 2 
1.09, 2 
4.38, 1 

0.6 
4.44, 2 
6.27, 2 
7.80, 2 
8.45, 2 
8.67, 2 
8.13, 2 
7.51, 2 
5.87, 2 
3.88, 2 

0.5 
6.15, 2 
8-31, 2 
1.03, 3 
1.09, 3 
1.14, 3 
1.11,3 
1.02, 3 
8.22, 2 
5.82, 2 

TABLE 1. Dimensionless values of the axial velocity for the case where the lower plate 
surface is a tangent plane to the pool. 

distribution on the top surface as a Gaussian which decays to l /e of its maximum 
value in a distance 1.2a, where a is the weld pool radius. As we might expect the 
increasing current again causes the contours to move outwards and the dimensionless 
values of \r to decrease. 

We also note that, when compared with the results of the analytic current dis- 
tribution, the dimensionless values of the stream function are increased by a factor 
of about 100. This is because the stream function is divided by I2 to produce the 
dimensionless stream function. For the Hankel transform current distributions most 
of the current I flows through the weld pool, whereas for the analytic distributions 
the current flowing through the weld pool is typically 0.1 I. 

Table 1 shows the variation of the axial velocity distribution with current and with 
the concentration of the current input. The values are given in floating-point form; 
i.e. y, n corresponds to y x 10n. In  addition to the above trends, we note that the 
magnitude of the axial velocity is strongly dependent on the nature of the current 
source. Reducing the decay radius of the current input considerably increases the 
axial velocity (and indeed the magnitude of the entire velocity distribution). 

Figure 5 shows results for the same current input as in figure 4, the difference being 
that the weld pool in figure 5 does not fully penetrate the plate. The results are for the 
case where the plate thickness is twice the weld pool radius. I n  this case the current 
has a larger volume of metal to diverge into and consequently the stirring force, i.e. 
the rotational part of j x B, and the fluid velocity are somewhat smaller. However, for 
an infinitely thick plate, electromagnetic stirring will still cause fluid flow in the pool. 
If we were to compute the flow for a plate of thickness greater than Za, the velocity 
would decrease with increasing plate thickness, approaching the velocity associated 
with a semi-infinite region in the limit. With a current distribution of decay radius 0.8a, 
the stream-function maps for plates of thickness a and 2a are very similar. This suggests 
that, for this fairly concentrated current input, the fluid flow for a plate of thickness a 
is already close to that for a semi-infinite region, so that increasing the plate thickness 
will have little effect on the flow. 
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FIGURE 5 .  Dimensionless stream function 106Y/K for a Gaussian current input with 
decay radius 1 . 2 ~  in plate thickness 2a. ( a )  I = 0.1 A, ( b )  1 = 100 A. 

Finally we note that for a pool of 2.5mm radius fully penetrating a plate with 
current distributions of decay radii 3, 2 and 1.5 mm, the maximum velocities on the 
axis of symmetry are 25 mm s-l, 62 mm s-l and 105 mm s-l respectively. 

7. Discussion 
A question which has been the subject of some speculation in the past is whether the 

flow in the pool is laminar or turbulent. The only convincing way to answer this point 
would be by a stability analysis, which would be extremely difficult. The model used 
in this paper assumes that the flow is laminar and the results obtained are consistent 
with this assumption. However, as Roache (1972) points out, the critical Reynolds 
number above which the flow becomes turbulent can be either reduced or increased 
by effects of ‘numerical diffusion ’, and consequently the numerical results do no more 
than suggest that the flow should be laminar. This suggestion is reinforced when we 
examine the Reynolds number of the flow. This satisfies Re < 600 for all the cases 
considered with I = 100 A and, although we do not know the critical Reynolds number 
for this problem, the critical Reynolds numbers for other interior flow problems are 
typically somewhat larger than 600 (Landau & Lifshitz 1959). 

Unfortunately i t  does not appear to be possible to  compare the results from this 
model with any experimental results. Woods & Milner (197 1)  conducted several experi- 
ments in hemispherical bowls, but they did not attempt to measure the velocity in 
these cases; instead they looked at the degree of mixing of various tracer materials. 
They did produce quantitative results for a model experiment with mercury in a 
rectangular bath, by measuring the velocity on the surface photographically. Because 
of the differences in geometry it is unreasonable to expect good agreement with their 
results ; however i t  is encouraging that their observed maximum surface velocities of 
25-80 mm s-l for a current of 100A are roughly similar to  those predicted by our 
model. 

Kublanov & Erokhin (1974) considered a model experiment with liquid gallium in a 
container which was a parabola of revolution. The maximum radius of the container 
was 50 mm and the velocities were in the range 50-100 mm s-l. Kublanov & Erokhin 
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noted that the flow was turbulent, which is not surprising as the Reynolds number 
was around 104 .  It would be interesting to see what our laminar flow model would 
make of a situation where the physical flow is known to be turbulent; unfortunately 
this is not possible, as the stability restrictions (33) and (34) make& prohibitivelysmall. 

From equation (6) we see that the only parameter governing the magnitude of the 
dimensionless quantities V and Q is Sozou’s constant, K ;  the function F depends 
only on ratios of lengths (i.e. .,,/a for the Gaussian current input or b and c for the 
point source, point sink model) and, provided these ratios are kept constant, F will 
be independent of I and a. If V, is the typical magnitude of V for a particular flow, 
the Reynolds number is just Re = SV,. This shows that for a model experiment in 
which the length scale is different from that of a weld pool i t  is important to  keep the 
value of K the same. For example, to compare a TIG weld pool in steel using a current 
of 100A with a model experiment in gallium, the model experiment should use a 
current of 45A whatever the size of the container. The experiments of Kublanov & 
Erokhin used currents of 550-700A and can only be compared with currents of over 
1000A in steel, i.e. currents much larger than those normally used in TIG welding. 

We note that the direction of flow is down the axis for all the current distributions 
considered except one or two of the more artificial ones. Shercliff (1970) suggested 
that as long asj, is positive throughout the pool (where u denotes the radial direction in 
cylindrical polar co-ordinates) then the flow will always be directed down the axis. 
For all the numerical current distributions considered in this paper j ,  is indeed 
positive throughout the pool. Any physical situation where j, is negative in the pool 
is probably of no practical significance to  welding. The analytic current distributions 
which produced flow up the axis can therefore be dismissed as interesting but un- 
realistic. 

Finally we may evaluate the PBclet number of the flow. For currents of l00A the 
PBclet number lies in the range 10 < Pe < 70 so that convection must be the dominant 
effect. As the fluid flow is down the axis, this means that the heat transfer is pre- 
ferentially down the axis. The pool boundary is not necessarily hemispherical in 
practice; it is of course the surface on which the temperature is equal to  the melting 
temperature. If the heating was from a point source in a thick block of metal and there 
was no fluid motion, the pool boundary would be hemispherical. The effect of the fluid 
flow is to deepen the pool; however the effect of the heat source being distributed over 
the surface of the pool is to make the pool shallower. To determine the shape of the 
pool boundary is a much more difficult problem which involves the solution of coupled 
fluid flow and heat flow with a free boundary and is not considered in this paper. 
However, we can make the observation that, the more concentrated the current 
distribution, the smaller the widthldepth ratio of the weld nugget should be. This 
effect is a plausible explanation for some experimental results by Willgoss (1978, 
private communication). His experiments produced stationary TIG welds in thick 
blocks of material. With argon as a shielding gas the width/depth ratio was around 
2 (i.e. the pool boundary was roughly hemispherical). Adding some hydrogen to the 
shielding gas made the arc appear much more concentrated and deepened the pool 
considerably, producing a width/depth ratio as low as 1 in some cases. However, there 
was no indication of a ‘keyhole’ having formed in the pool surface. It is difficult to 
imagine a physical mechanism other than electromagnetic stirring which will produce 
a width/dept,h ratio lower than 2 in a thick specimen. 
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